Операці́йна систе́ма (скор. ОС) — це базовий комплекс програмного забезпечення, що виконує управління апаратним забезпеченням комп'ютера або віртуальної машини; забезпечує керування обчислювальним процесом і організовує взаємодію з користувачем.
Операційна система звичайно складається з ядра операційної системи та базового набору прикладного програмного забезпечення.
Поняття операційної системи напряму пов'язане з такими поняттями, як:
Багатозадачні операційні системи також включають ще одну обов'язкову складову - механізм підтримки багатозадачності. Ця складова не надається в якості системного сервісу і тому не може бути віднесена до жодної з підсистем.
Існує три основних механізми забезпечення багатозадачності (планування задач):
В сучасних системах, як правило комбінується методи 2 і 3.
Операція введення виконується як читання даних з зовнішнього пристрою в оперативну пам'ять, операція виведення - як запис даних з оперативної пам'яті на зовнішній пристрій.
При роботі з файлами система введення-виведення впроваджує спеціальну абстракцію - потік вводу-виводу, що дозволяє програмам, які звертаються за сервісами введення-виведення, використовувати одноманітний перелік функцій роботи з файлами незалежно від типу пристрою, на якому знаходиться файл, та типу файлової системи, яка містить цей файл. Відмінності доступу до різних пристроїв та файлових систем забезпечуються додатковими програмними модулями - драйверами пристроїв та файлових систем.
В окремих операційних системах підсистема управління введенням-виведенням також може впроваджувати механізми, які призвані підвищити швидкість обміну даними між задачами та файлами. Найчастіше використовується механізм буферизації (кешування) даних, який полягає в тому, що при читанні даних з файлу підсистема намагається за одну операцію введення читати дані блоками зручного (звичайно досить великого) розміру, а не порціями, які запитує задача. Завдяки цьому за одну операцію введення в оперативну пам'ять потрапляють також додаткові дані, які зберігаються в кеші і в подальшому передаються в програму без додаткових звернень до пристрою. Подібним чином цей механізм працює і при виконанні операцій запису.
В багатозадачних операційних системах кількість компонентів, що одночасно можуть знаходитись в оперативній пам'яті зростає пропорційно кількості задач і може сягати сотень.
Підсистема управління оперативною пам'яттю забезпечує розподіл оперативної пам'яті між різними компонентами, а також розподіляє пам'ять під кеш системи введення-виведення.
В окремих багатозадачних операційних системах підсистема управління оперативною пам'яттю також забезпечує віртуалізацію оперативної пам'яті, завдяки чому кожна задача (процес) отримує власну віртуальну пам'ять, причому таким чином, що нестача реальної (фізичної) пам'яті покривається за рахунок перерозподілу даних між оперативною пам'яттю та зовнішнім накопичувачем і переміщення даних між фізичною оперативною пам'яттю і зовнішнім накопичувачем приховується від задач. Це переміщення називається пейджингом (англ. paging) або свопінгом (англ. swapping — обмін) — в залежності від термінології конкретної ОС.
Запровадження механізму віртуалізації оперативної пам'яті дозволяє отримати два корисних наслідки:
В багатозадачних системах підсистема управління задачами (процесами) також забезпечує механізми залежностей між задачами, в тому числі: синхронізацію задач та успадкування властивостей.
Взаємодія процесів забезпечується всіма підсистемами ядра ОС: підсистема управління введенням-виведенням забезпечує передачу даних між процесами; підсистема управління оперативною пам'яттю розподіляє під процеси спільну оперативну пам'ять, підсистема управління процесами забезпечує синхронізацію виконання процесів та впроваджує механізм обміну сигналів, за допомогою якого процеси повідомляються про виникнення в системі надзвичайних подій.
Багато операційних систем дозволяють користувачеві встановити будь-який графічний інтерфейс на власний вибір. Типовим прикладом у більшості Юнікс-систем (BSD, Лінукс, Minix) є віконна система Х у поєднанні з графічним менеджером KDE чи Gnome. Для Юнікс-систем графічний інтерфейс не є необхідним.
Графічний інтерфейс користувача невпинно розвивається. Наприклад, інтерфейс Windows модифікується щоразу при випуску нової основної версії, а ГІК MacOS було кардинально змінено після випуску MacOS X у 2001 році.
Ключовим моментом проектування драйверів є абстрагування. Кожна модель пристрою (навіть якщо пристрої однакового класу) є унікальною. Новіші моделі часто працюють швидше чи продуктивніше і інакше контролюються. ОС не може знати, як контролювати кожен пристрій зараз і в майбутньому. Для вирішення цієї проблеми ОС лише задає правила поведінки класу пристроїв. Задачею драйвера є перетворення цих правил у специфічні для кожного пристрою команди керування.
Багато ОС також підтримують один чи кілька специфічних протоколів, як наприклад SNA на системах від IBM, DECnet на системах від Digital Equipment Corporation, та Microsoft-специфічні протоколи для Windows. Для певних задач використовуються специфічні протоколи, як наприклад NFS для роботи з файлами через мережу.
До кінця 1960-х, проте, було розроблено цілий ряд операційних систем, в котрих були реалізовані всі або більшість з вищеперелічених функцій. До них можна віднести «Atlas» (Манчестерський університет), «CTTS» и «ITSS» (Массачусетський технологічний інститут (МТІ)), «THE» (Ейндховенський технологічний університет), «RS4000» (Університет Орхуса) та інші (на той момент їх налічувалось близько сотні)
Найбільш розвинуті ОС того часу, такі як «OS/360» (компанія «IBM»), «SCOPE» (компанія «CDC») та завершений вже в 1970-х роках «MULTICS» (МТІ та компанія «Bell Labs»), передбачали можливість використання багатопроцесорних системи.
Спонтанний характер розробки ОС призвів до наростання кризових явищ, пов'язаних, перш за все, зі складністю та великими розмірами розроблюваних систем. ОС погано масштабувались (простіші не використовували всіх можливостей потужних обчислювальних машин; складніші неоптимально виконувались або взагалі не виконувались на менш потужних системах) і були повністю несумісними між собою.
У 1969 році співробітники МТІ Кен Томпсон, Деніс Рітчі та Браян Керніган з колегами розробили та реалізували ОС «Юнікс» («Unix»; первинно «UNICS», на противагу «MULTICS»). Нова ОС увібрала в себе багато рис попередниць, але на противагу їм мала цілий ряд переваг:
У кінці 1970-х років співробітники Каліфорнійського університету в Берклі внесли ряд суттєвих вдосконалень у джерельні коди Юнікс, включно з реалізацією стеку мережевих протоколів TCP/IP. Їх розробка стала відомою під іменем BSD (англ. Berkeley Software Distribution).
Через конфлікт з «Bell Labs» Річард Столмен поставив задачу реалізувати повністю незалежну від авторських прав ОС на основі Юнікс, заснувавши проект «GNU» (англ. рекурсивсне скорочення «GNU's Not Unix» — «ГНЮ Не Юнікс»).
Незабаром «Юнікс» стала стандартом де-факто, а потім і юридичним — ISO/IEC 9945. ОС, що дотримувались цього стандарту чи опираються на нього, називають «відкритими» або «стандартними». До них належать системи, що базуються на останній версії «Юнікс», випущеної «Bell Labs» («System V»), на розробках Університету Берклі («FreeBSD», «OpenBSD», «NetBSD»), а також ОС «Linux», розроблена спільнотою на чолі з Лінусом Торвальдсом та в межах проекту «GNU» (основні системні інструменти).
Операційна система звичайно складається з ядра операційної системи та базового набору прикладного програмного забезпечення.
Функції операційної системи
Головні функції:- Виконання на вимогу програм користувача тих елементарних (низькорівневих) дій, які є спільними для більшості програмного забезпечення і часто зустрічаються майже у всіх програмах (введення та виведення даних, запуск і зупинка інших програм, виділення та вивільнення додаткової пам'яті тощо).
- Стандартизований доступ до периферійних пристроїв (пристрої введення-виведення).
- Завантаження програм у оперативну пам'ять і їх виконання.
- Керування оперативною пам'яттю (розподіл між процесами, організація віртуальної пам'яті).
- Керування доступом до даних енергонезалежних носіїв (твердий диск, оптичні диски тощо), організованим у тій чи іншій файловій системі.
- Забезпечення користувацького інтерфейсу.
- Мережеві операції, підтримка стеку мережевих протоколів.
- Паралельне або псевдопаралельне виконання задач (багатозадачність).
- Розподіл ресурсів обчислювальної системи між процесами.
- Організація надійних обчислень (неможливості впливу процесу на перебіг інших), основана на розмежуванні доступу до ресурсів.
- Взаємодія між процесами: обмін даними, синхронізація.
- Захист самої системи, а також користувацьких даних і програм від дій користувача або програм.
- Багатокористувацький режим роботи та розділення прав доступу (автентифікація, авторизація).
Поняття операційної системи напряму пов'язане з такими поняттями, як:
- Файл - іменований впорядкований набір даних на пристрої зберігання інформації; операційна система забезпечує організацію файлів в файлові системи.
- Файлова система - набір файлів (можливо порожній), організованих за наперед визначеними правилами. Якщо організація файлів в файлову систему відбувається з використанням каталогів, то така файлова система називається ієрархічною.
- Програма - файл, що містить набір інструкцій для виконання. В якості виконавця інструкцій програми можуть виступати:
- центральний процесор - якщо програма містить машинний код (звичайно отримують шляхом компіляції вихідного текста програми, написаного однією з компільованих мов);
- інтерпретатор - інша програма, яка забезпечує розпізнавання і виконання інструкцій (в окремих випадках інтерпретатор також називають віртуальною машиною).
- Задача - програма в процесі виконання (в термінології операційних систем UNIX використовують термін "процес").
- Команда - ім'я, яке використовує користувач ОС або інша програма для виконання вказаної програми (може збігатися з іменем файла з програмою) або поіменованої дії (вбудованої команди).
- Командний інтерпретатор - середовище, яке забезпечує інтерфейс з користувачем і виконання команд.
- універсальні (для загального використання);
- спеціальні (для розв'язання спеціальних задач);
- спеціалізовані (виконуються на спеціальному обладнанні);
- однозадачні (в окремий момент часу можуть виконувати лише одну задачу);
- багатозадачні (в окремий момент часу здатні виконувати більше однієї задачі);
- однокористувацькі (в системі відсутні механізми обмеження доступу до файлів та на використання ресурсів системи);
- багатокористувацькі (система впроваджує поняття "власник файлу" та забезпечує механізми обмеження на використання ресурсів системи (квоти)), всі багатокористувацькі операційні системи також є багатозадачними;
- реального часу (система підтримує механізми виконання задач реального часу, тобто такі, для яких будь які операції завжди виконуються за наперед передбачуваний і незмінний при наступних виконаннях час).
- вмонтовані (такі, що зберігаються в енергонезалежній пам'яті обчислювальної машини або пристрою без можливості заміни в процесі експлуатації обладнання);
- невмонтовані(?) (такі, що інсталюються на один з пристроїв зберігання інформації обчислювальної машини з можливістю подальшої заміни в процесі експлуатації).
- стандартні (відповідають одному з загальноприйнятих відкритих стандартів, найчастіше POSIX);
- нестандартні (в тому числі такі, що розробляються відповідно до корпоративних стандартів).
- вільні - з вільними програмним кодом (GNU, BSD, MIT)
- відкриті (англ. open source) - з відкритим програмним кодом;
- власницькі (англ. proprietary) - комерційні з закритим кодом.
Складові ОС
До складу операційної системи входять:
- ядро операційної системи, що забезпечує розподіл та управління ресурсами обчислювальної системи;
- базовий набір прикладного програмного забезпечення, системні бібліотеки та програми обслуговування.
- управління введенням-виведенням інформації (підсистема вводу-виводу ядра ОС);
- управління оперативною пам'яттю (підсистема управління оперативною пам'яттю ядра ОС);
- управління процесами (підсистема управління процесами ядра ОС).
Багатозадачні операційні системи також включають ще одну обов'язкову складову - механізм підтримки багатозадачності. Ця складова не надається в якості системного сервісу і тому не може бути віднесена до жодної з підсистем.
Існує три основних механізми забезпечення багатозадачності (планування задач):
- шляхом надання процесора окремій задачі на квант часу, який визначається самою задачею (кооперативна багатозадачність; останнім часом практично не використовується або область використання значно обмежена всередині процесів);
- шляхом надання процесора окремій задачі на квант часу, який визначається обладнанням обчислювальної системи - інтервальним таймером;
- виділення під окрему задачу окремого процесора в багатопроцесорних системах.
В сучасних системах, як правило комбінується методи 2 і 3.
Вимоги до обладнання
Окрема операційна система зазвичай може виконуватись на обмеженому переліку обладнання, яке забезпечує потрібні їй механізми. Сучасні універсальні (і не тільки) операційні системи зазвичай вимагають апаратної підтримки наступних механізмів:- підтримка сторінкового поділу оперативної пам'яті з можливістю апаратного захисту сторінок від модифікації даних окремими задачами (процесами);
- підтримка захищеного режиму виконання процесора (режиму ядра ОС), який передбачає можливість виконання операцій процесора по управлінню обладнанням системи, при цьому спроба виконати подібну операцію в прикладній програмі блокується апаратно.
Підсистеми ядра ОС
Інтерфейс ядра операційної системи
Функції ядра операційної системи можуть бути виконані внаслідок виконання в прикладних програмах спеціальних функцій - системних викликів. Призначення системного виклику полягає в тому, що прикладні програми не взмозі самотужки визначити, за якими адресами знаходяться функції ядра.- Системний виклик в один з машинно-залежних способів реалізує механізм отримання адрес функцій ядра та передачу в ці функції необхідних параметрів системного виклику, а також отримання результату системного виклику. Найчастіше системні виклики забезпечуються через систему переривань, завдяки чому адреса функції ядра не тільки обраховується апаратно (в процесі обробки переривання), але й забезпечується захист інформаційних ресурсів ядра.
- Системні виклики найчастіше мають синтаксис функції мови програмування, на якій написано ядро ОС.
Підсистема управління введенням-виведенням
Підсистема управління введенням-виведенням реалізує базові механізми обміну даними між пристроями введення-виведення та оперативною пам'яттю обчислювальної машини та забезпечує організацію файлів в файлові системи.Операція введення виконується як читання даних з зовнішнього пристрою в оперативну пам'ять, операція виведення - як запис даних з оперативної пам'яті на зовнішній пристрій.
При роботі з файлами система введення-виведення впроваджує спеціальну абстракцію - потік вводу-виводу, що дозволяє програмам, які звертаються за сервісами введення-виведення, використовувати одноманітний перелік функцій роботи з файлами незалежно від типу пристрою, на якому знаходиться файл, та типу файлової системи, яка містить цей файл. Відмінності доступу до різних пристроїв та файлових систем забезпечуються додатковими програмними модулями - драйверами пристроїв та файлових систем.
В окремих операційних системах підсистема управління введенням-виведенням також може впроваджувати механізми, які призвані підвищити швидкість обміну даними між задачами та файлами. Найчастіше використовується механізм буферизації (кешування) даних, який полягає в тому, що при читанні даних з файлу підсистема намагається за одну операцію введення читати дані блоками зручного (звичайно досить великого) розміру, а не порціями, які запитує задача. Завдяки цьому за одну операцію введення в оперативну пам'ять потрапляють також додаткові дані, які зберігаються в кеші і в подальшому передаються в програму без додаткових звернень до пристрою. Подібним чином цей механізм працює і при виконанні операцій запису.
Підсистема управління оперативною пам'яттю
Будь яка програма може виконуватись лише тоді, коли вона завантажена в оперативну пам'ять, так само, будь які дані з файлів можуть оброблятись лише тоді, коли вони завантажені в оперативну пам'ять. Завантаження програми та даних в оперативну пам'ять призводить до того, що в оперативній пам'яті одночасно знаходяться одразу кілька компонентів: ядро операційної системи, командний інтерпретатор, програма, що виконується, та дані, що обробляються. Крім того, програма в процесі свого виконання може звертатись до підсистеми управління оперативною пам'яттю з запитами на виділення додаткової - динамічної - оперативної пам'яті.В багатозадачних операційних системах кількість компонентів, що одночасно можуть знаходитись в оперативній пам'яті зростає пропорційно кількості задач і може сягати сотень.
Підсистема управління оперативною пам'яттю забезпечує розподіл оперативної пам'яті між різними компонентами, а також розподіляє пам'ять під кеш системи введення-виведення.
В окремих багатозадачних операційних системах підсистема управління оперативною пам'яттю також забезпечує віртуалізацію оперативної пам'яті, завдяки чому кожна задача (процес) отримує власну віртуальну пам'ять, причому таким чином, що нестача реальної (фізичної) пам'яті покривається за рахунок перерозподілу даних між оперативною пам'яттю та зовнішнім накопичувачем і переміщення даних між фізичною оперативною пам'яттю і зовнішнім накопичувачем приховується від задач. Це переміщення називається пейджингом (англ. paging) або свопінгом (англ. swapping — обмін) — в залежності від термінології конкретної ОС.
Запровадження механізму віртуалізації оперативної пам'яті дозволяє отримати два корисних наслідки:
- кожна задача фактично виконується у власному адресовому просторі, тобто таким чином, якби вона виконувалась в однозадачній операційній системі, завдяки чому значно зменшується вплив окремих задач однією на одну та на ядро системи, а завдяки цьому - і надійність системи;
- кожна задача отримує стільки віртуальної оперативної пам'яті, скільки потрібно, а не стільки, скільки є наявної фізичної оперативної пам'яті.
Підсистема управління задачами (процесами)
В багатозадачних системах підсистема управління задачами (процесами) також забезпечує механізми залежностей між задачами, в тому числі: синхронізацію задач та успадкування властивостей.
Засоби міжпроцесної взаємодії
Взаємодія процесів забезпечується всіма підсистемами ядра ОС: підсистема управління введенням-виведенням забезпечує передачу даних між процесами; підсистема управління оперативною пам'яттю розподіляє під процеси спільну оперативну пам'ять, підсистема управління процесами забезпечує синхронізацію виконання процесів та впроваджує механізм обміну сигналів, за допомогою якого процеси повідомляються про виникнення в системі надзвичайних подій.
Додаткова функціональність операційних систем
Безпека
Безпека ОС базується на двох ідеях:- ОС надає прямий чи непрямий доступ до ресурсів на кшталт файлів на локальному диску, привілейованих системних викликів, особистої інформації про користувачів та служб, представлених запущеними програмами;
- ОС може розділити запити ресурсів від авторизованих користувачів, дозволивши доступ, та неавторизованих, заборонивши його.
- Внутрішня безпека — вже запущені програми. На деяких системах програма, оскільки вона вже запущена, не має ніяких обмежень, але все ж типово вона має ідентифікатор, котрий використовується для перевірки запитів до ресурсів.
- Зовнішня безпека — нові запити з-за меж комп'ютера, як наприклад реєстрація з консолі чи мережеве з'єднання. В цьому випадку відбувається процес авторизації за допомогою імені користувача та паролю, що його підтверджує, чи інших способів як наприклад магнітні картки чи біометричні дані.
Графічний інтерфейс користувача
Багато операційних систем дозволяють користувачеві встановити будь-який графічний інтерфейс на власний вибір. Типовим прикладом у більшості Юнікс-систем (BSD, Лінукс, Minix) є віконна система Х у поєднанні з графічним менеджером KDE чи Gnome. Для Юнікс-систем графічний інтерфейс не є необхідним.
Графічний інтерфейс користувача невпинно розвивається. Наприклад, інтерфейс Windows модифікується щоразу при випуску нової основної версії, а ГІК MacOS було кардинально змінено після випуску MacOS X у 2001 році.
Драйвери пристроїв
Ключовим моментом проектування драйверів є абстрагування. Кожна модель пристрою (навіть якщо пристрої однакового класу) є унікальною. Новіші моделі часто працюють швидше чи продуктивніше і інакше контролюються. ОС не може знати, як контролювати кожен пристрій зараз і в майбутньому. Для вирішення цієї проблеми ОС лише задає правила поведінки класу пристроїв. Задачею драйвера є перетворення цих правил у специфічні для кожного пристрою команди керування.
Робота в мережі
Багато ОС також підтримують один чи кілька специфічних протоколів, як наприклад SNA на системах від IBM, DECnet на системах від Digital Equipment Corporation, та Microsoft-специфічні протоколи для Windows. Для певних задач використовуються специфічні протоколи, як наприклад NFS для роботи з файлами через мережу.
Історія
Перші комп'ютери взагалі не мали ОС. На початку 1960-х вони лише комплектувались набором інструментів для розробки, планування та виконання завдань. Серед інших можна виділити системи від UNIVAC та Control Data Corporation.До кінця 1960-х, проте, було розроблено цілий ряд операційних систем, в котрих були реалізовані всі або більшість з вищеперелічених функцій. До них можна віднести «Atlas» (Манчестерський університет), «CTTS» и «ITSS» (Массачусетський технологічний інститут (МТІ)), «THE» (Ейндховенський технологічний університет), «RS4000» (Університет Орхуса) та інші (на той момент їх налічувалось близько сотні)
Найбільш розвинуті ОС того часу, такі як «OS/360» (компанія «IBM»), «SCOPE» (компанія «CDC») та завершений вже в 1970-х роках «MULTICS» (МТІ та компанія «Bell Labs»), передбачали можливість використання багатопроцесорних системи.
Спонтанний характер розробки ОС призвів до наростання кризових явищ, пов'язаних, перш за все, зі складністю та великими розмірами розроблюваних систем. ОС погано масштабувались (простіші не використовували всіх можливостей потужних обчислювальних машин; складніші неоптимально виконувались або взагалі не виконувались на менш потужних системах) і були повністю несумісними між собою.
У 1969 році співробітники МТІ Кен Томпсон, Деніс Рітчі та Браян Керніган з колегами розробили та реалізували ОС «Юнікс» («Unix»; первинно «UNICS», на противагу «MULTICS»). Нова ОС увібрала в себе багато рис попередниць, але на противагу їм мала цілий ряд переваг:
- проста метафорика (два ключових поняття — процес та файл);
- компонентна архітектура (принцип «одна програма — одна функція», або інакше «кожна програма має робити лише одну роботу, але робити її добре» плюс потужні засоби об'єднання цих програм для розв'язання конкретних задач);
- мінімізація ядра та кількості системних викликів;
- незалежність від апаратної архітектури і реалізація на машинно незалежній мові програмування (для цього була розроблена мова програмування «C»;
- уніфікація файлів (будь-що у системі є файлом, до якого можна доступитись за спільними для всіх правилами).
У кінці 1970-х років співробітники Каліфорнійського університету в Берклі внесли ряд суттєвих вдосконалень у джерельні коди Юнікс, включно з реалізацією стеку мережевих протоколів TCP/IP. Їх розробка стала відомою під іменем BSD (англ. Berkeley Software Distribution).
Через конфлікт з «Bell Labs» Річард Столмен поставив задачу реалізувати повністю незалежну від авторських прав ОС на основі Юнікс, заснувавши проект «GNU» (англ. рекурсивсне скорочення «GNU's Not Unix» — «ГНЮ Не Юнікс»).
Незабаром «Юнікс» стала стандартом де-факто, а потім і юридичним — ISO/IEC 9945. ОС, що дотримувались цього стандарту чи опираються на нього, називають «відкритими» або «стандартними». До них належать системи, що базуються на останній версії «Юнікс», випущеної «Bell Labs» («System V»), на розробках Університету Берклі («FreeBSD», «OpenBSD», «NetBSD»), а також ОС «Linux», розроблена спільнотою на чолі з Лінусом Торвальдсом та в межах проекту «GNU» (основні системні інструменти).
Комментариев нет:
Отправить комментарий